ar X iv : m at h / 06 05 44 4 v 1 [ m at h . N T ] 1 6 M ay 2 00 6 ABELIAN VARIETIES OVER CYCLIC FIELDS

نویسنده

  • MICHAEL LARSEN
چکیده

Let K be a field of characteristic 6= 2 such that every finite separable extension of K is cyclic. Let A be an abelian variety over K. If K is infinite, then A(K) is Zariski-dense in A. Unless K ⊂ F̄p for some p, the rank of A over K is infinite.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 06 05 37 3 v 1 [ m at h . A G ] 1 5 M ay 2 00 6 FLATNESS OF THE LINKED GRASSMANNIAN

We show that the linked Grassmannian scheme, which arises in a functorial compactification of spaces of limit linear series, and in local models of certain Shimura varieties, is Cohen-Macaulay, reduced, and flat. We give an application to spaces of limit linear series.

متن کامل

ar X iv : h ep - t h / 06 05 27 4 v 1 2 8 M ay 2 00 6 hep - th / 0605274 Metric and coupling reversal in string theory

Invariance under reversing the sign of the metric G M N (x) and/or the sign of the string coupling field H Universe K contains only F1 and NS5 of IIB and Heterotic SO(32).

متن کامل

ar X iv : m at h / 06 05 64 5 v 1 [ m at h . A G ] 2 4 M ay 2 00 6 ON NORI ’ S FUNDAMENTAL GROUP SCHEME

The aim of this note is to give two structure theorems on Nori’s fundamental group scheme of a proper connected variety defined over a perfect field and endowed with a rational point.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006